Elementary maths for GMT

Linear Algebra

Part 2: Matrices, Elimination and Determinant

$m \times n$ matrices

- The system of m linear equations in n variables $x_{1}, x_{2}, \ldots, x_{n}$

$$
\left\{\begin{array}{rll}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & = & b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & = & b_{2} \\
& \vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & = & b_{m}
\end{array}\right.
$$

can be written as the matrix equation $A x=b$, i.e.

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

$m \times n$ matrices

- The matrix

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

has m rows and n columns, and is called a $m \times n$ matrix

Special matrices

- A square matrix (for which $m=n$) is called diagonal matrix if all elements $a_{i j}$ for which $i \neq j$ are zero
- If all elements $a_{i i}$ are one, then the matrix is called the identity matrix, denoted with I_{m}
- depending on the context, the subscript m may be omitted

$$
I=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

- If all matrix entries are zero, then the matrix is called zero matrix or null matrix, denoted with 0

Matrix addition

- For two matrices A and B, we have $A+B=C$, with $c_{i j}=a_{i j}+b_{i j}$
- For example

$$
\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]+\left[\begin{array}{ll}
7 & 10 \\
8 & 11 \\
9 & 12
\end{array}\right]=\left[\begin{array}{cc}
8 & 14 \\
10 & 16 \\
12 & 18
\end{array}\right]
$$

- Q: What are the conditions on the dimensions of the matrices A and B ?

Matrix multiplication

- Multiplying a matrix with a scalar is defined as follows: $c A=B$ with $b_{i j}=c a_{i j}$
- For example

$$
2\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]=\left[\begin{array}{ccc}
2 & 4 & 6 \\
8 & 10 & 12 \\
14 & 16 & 18
\end{array}\right]
$$

Matrix multiplication

- Multiplying two matrices is a bit more involved
- We have $A B=C$ with $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$
- For example

$$
\left[\begin{array}{cccc}
6 & 5 & 1 & -3 \\
-2 & 1 & 8 & 4
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
5 & 0 & 2 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
6 & 2 & 2 \\
37 & 5 & 16
\end{array}\right]
$$

- Q: What are the conditions on the dimensions of the matrices A and B ? What are the dimensions of C ?

Properties of matrix multiplication

- Matrix multiplication is associative and distributive over addition

$$
\begin{gathered}
(A B) C=A(B C) \\
A(B+C)=A B+A C \\
(A+B) C=A C+B C
\end{gathered}
$$

- However, matrix multiplication is not commutative, in general, $A B \neq B A$
- Also, if $A B=A C$, it does not necessarily follow that $B=C$ (even if A is not the zero matrix)

Zero and identity matrix

- The zero matrix 0 has the property that if you add it to another matrix A, you get precisely A again

$$
A+0=0+A=A
$$

- The identity matrix I has the property that if you multiply it with another matrix A, you get precisely A again

$$
A I=I A=A
$$

Matrix and 2D linear transformation

- The matrix multiplication of a 2×2 square matrix and a 2×1 matrix gives a new 2×1 matrix
- For example

$$
\left[\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

- We can interpret a 2×1 matrix as a 2 D vector or point; the 2×2 matrix transforms any vector (or point) into another vector (or point)
- More later...

Transposed matrices

- The transpose A^{T} of a $m \times n$ matrix A is a $n \times m$ matrix that is obtained by interchanging the rows and columns of A

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right], \quad A^{T}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

Transposed matrices

- For example

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \quad A^{T}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
$$

- For the transpose of the product of two matrices we have

$$
(A B)^{T}=B^{T} A^{T}
$$

- Note the change of order

The dot product revisited

- If we regard (column) vectors as matrices, we see that the dot product of two vectors can be written as $u \cdot v=u^{T} v$
- For example

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=[32]=32
$$

- A 1×1 matrix is simply a number, and the brackets are omitted

Inverse matrices

- The inverse of a matrix A is a matrix A^{-1} such that

$$
A A^{-1}=I
$$

- Only square matrices possibly have an inverse
- Note that the inverse of A^{-1} is A, so we have

$$
A A^{-1}=A^{-1} A=I
$$

Gaussian elimination

- Matrices are a convenient way of representing systems of linear equations

$$
\left\{\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & = \\
& b_{2} \\
& \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}\right.
$$

- If such a system has a unique solution, it can be solved with Gaussian elimination

Gaussian elimination

- Permitted rules in Gaussian elimination are
- Rule 1: Interchanging two rows
- Rule 2: Multiplying a row with a (non-zero) constant
- Rule 3: Adding a multiple of another row to a row

Gaussian elimination

- Matrices are not necessary for Gaussian elimination, but very convenient, especially augmented matrices
- The augmented matrix corresponding to the previous system of equations is

$$
\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right]
$$

Gaussian elimination: example

- Suppose we want to solve the following system

$$
\left\{\begin{array}{c}
x+y+2 z=17 \\
2 x+y+z=15 \\
x+2 y+3 z=26
\end{array}\right.
$$

- Q: What is the geometric interpretation of this system? And what is the interpretation of its solution?

Gaussian elimination: example

- By applying the rules in a clever order, we get

$\underset{-1(2)}{R 2}\left[\begin{array}{lll|c}1 & 1 & 2 & 17 \\ 0 & 1 & 3 & 19 \\ 0 & 1 & 1 & 9\end{array}\right] \underset{(3)-(2)}{R 3}\left[\begin{array}{lll|c}1 & 1 & 2 & 17 \\ 0 & 1 & 3 \\ 0 & 0 & -2 & 19 \\ -10\end{array}\right] \underset{(1)-(2)}{R 3}\left[\begin{array}{ccc|c}1 & 0 & -1 & -2 \\ 0 & 1 & 3 & 19 \\ 0 & 0 & -2 & -10\end{array}\right]$

Gaussian elimination: example

- The interpretation of the last augmented matrix

$$
\left[\begin{array}{lll|l}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 5
\end{array}\right]
$$

is the very convenient system of linear equations

$$
\left\{\begin{array}{l}
x=3 \\
y=4 \\
z=5
\end{array}\right.
$$

- In other words, the point $(3,4,5)$ satisfies all three equations

Gaussian elimination: interpretation

- We started with three equations, which are implicit representations of planes

$$
\begin{aligned}
x+y+2 z & =17 \\
2 x+y+z & =15 \\
x+2 y+3 z & =26
\end{aligned}
$$

- We ended with three other equations, which can also be interpreted as planes

$$
\begin{aligned}
& x=3 \\
& y=4 \\
& z=5
\end{aligned}
$$

- The steps in Gaussian elimination preserve the location of the solution

Gaussian elimination: outcomes in 3D

- Since any linear equation in three variables is a plane in 3D, we can interpret the possible outcomes of systems of three equations

1. Three planes intersect in one point: the system has one unique solution
2. Three planes do not have a common intersection: the system has no solution
3. Three planes have a line in common: the system has many solutions

- The three planes can also coincide, then the equations are equivalent

Gaussian elimination: inverting matrices

- The same procedure can also be used to invert matrices

$$
\left[\begin{array}{lll|lll}
1 & 1 & 2 & 1 & 0 & 0 \\
1 & 3 & 4 & 0 & 1 & 0 \\
0 & 2 & 5 & 0 & 0 & 1
\end{array}\right] \quad \longmapsto \quad\left[\begin{array}{lll|cll}
1 & 1 & 2 & 1 & 0 & 0 \\
0 & 2 & 2 & -1 & 1 & 0 \\
0 & 2 & 5 & 0 & 0 & 1
\end{array}\right]
$$

$\longmapsto\left[\begin{array}{lll|ccc}1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 / 2 & 1 / 2 & 0 \\ 0 & 2 & 5 & 0 & 0 & 1\end{array}\right] \quad \longmapsto\left[\begin{array}{lll|lll}1 & 0 & 1 & 3 / 2 & -1 / 2 & 0 \\ 0 & 1 & 1 & -1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 3 & 1 & -1 & 1\end{array}\right]$
$\longmapsto\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 3 / 2 & -1 / 2 & 0 \\ 0 & 1 & 1 & -1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1 & 1 / 3 & -1 / 3 & 1 / 3\end{array}\right] \longmapsto\left[\begin{array}{lll|lll}1 & 0 & 0 & 7 / 6 & -1 / 6 & -2 / 6 \\ 0 & 1 & 0 & -5 / 6 & 5 / 6 & -2 / 6 \\ 0 & 0 & 1 & 2 / 6 & -2 / 6 & 2 / 6\end{array}\right]$

Gaussian elimination: inverting matrices

- The last augmented matrix tells us that the inverse of

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 3 & 4 \\
0 & 2 & 5
\end{array}\right]
$$

equals

$$
\frac{1}{6}\left[\begin{array}{ccc}
7 & -1 & -2 \\
-5 & 5 & -2 \\
2 & -2 & 2
\end{array}\right]
$$

Gaussian elimination: inverting matrices

- When does a (square) matrix have an inverse?
- If and only if its columns, seen as vectors, are linearly independent
- Equivalently, if and only if its rows, seen as transposed vectors, are linearly independent

Determinant

- The determinant of a matrix is the signed volume spanned by the column vectors
- The $\operatorname{determinant~} \operatorname{det} A$ of a matrix A is also written as $|A|$
- For example

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \\
\operatorname{det} A & =|A|=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
\end{aligned}
$$

Computing determinant

- Determinant can be computed as follows
' The determinant of a matrix is the sum of the products of the elements of any row or column of the matrix with their cofactors '
- But we do not know yet what cofactors are...

Cofactors

- The cofactor of an entry $a_{i j}$ in a $n \times n$ matrix A is the determinant of the $(n-1) \times(n-1)$ matrix A^{\prime} that is obtained from A by removing the i-th row and the j-th column, multiplied by -1^{i+j}
- We need cofactors to determine the determinant, but we need a determinant to determine a cofactor
- ‘To understand recursion, one needs to understand recursion '
- Q: What is the bottom of this recursion?

Cofactors

- Example for a 4×4 matrix A, the cofactor of the entry a_{13} is

$$
a_{13}^{c}=\left|\begin{array}{lll}
a_{21} & a_{22} & a_{24} \\
a_{31} & a_{32} & a_{34} \\
a_{41} & a_{42} & a_{44}
\end{array}\right| \quad\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]
$$

and $|A|=a_{13} a_{13}^{c}-a_{23} a_{23}^{c}+a_{33} a_{33}^{c}-a_{43} a_{43}^{c}$

Determinant and cofactors

- Example

$$
\begin{aligned}
\left|\begin{array}{lll}
0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8
\end{array}\right| & =0\left|\begin{array}{ll}
4 & 5 \\
7 & 8
\end{array}\right|-1\left|\begin{array}{ll}
3 & 5 \\
6 & 8
\end{array}\right|+2\left|\begin{array}{ll}
3 & 4 \\
6 & 7
\end{array}\right| \\
& =0(32-35)-1(24-30)+2(21-24) \\
& =0
\end{aligned}
$$

Systems of equations and determinant

- Consider the following system of linear equations

$$
\left\{\begin{array}{cl}
x+y+2 z & =17 \\
2 x+y+z & =15 \\
x+2 y+3 z & =26
\end{array}\right.
$$

- Such a system of n equations in n unknowns can be solved by using determinants
- In general, if we have $A x=b$, then $x_{i}=\frac{\left|A^{i}\right|}{|A|}$ where A^{i} is obtained from A by replacing the i-th column with b

Systems of equations and determinant

- So for our system $\left\{\begin{aligned} x+y+2 z & =17 \\ 2 x+y+z & =15 \\ x+2 y+3 z & =26\end{aligned}\right.$, we have

$$
x=\frac{\left|\begin{array}{lll}
17 & 1 & 2 \\
15 & 1 & 1 \\
26 & 2 & 3
\end{array}\right|}{\left|\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 1 \\
1 & 2 & 3
\end{array}\right|}
$$

$$
y=\frac{\left|\begin{array}{lll}
1 & 17 & 2 \\
2 & 15 & 1 \\
1 & 26 & 3
\end{array}\right|}{\left|\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 1 \\
1 & 2 & 3
\end{array}\right|}
$$

$$
Z=\frac{\left|\begin{array}{lll}
1 & 1 & 17 \\
2 & 1 & 15 \\
1 & 2 & 26
\end{array}\right|}{\left|\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 1 \\
1 & 2 & 3
\end{array}\right|}
$$

